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Natural language data – sociolinguistic, historical, and other types of 
corpora – should not be analyzed with fixed-effects regression 
models, such as VARBRUL and GoldVarb use. This is because tokens 
of linguistic variables are rarely independent; they are usually grouped 
and correlated according to factors like speaker (or text) and word. 
Fixed-effects models can estimate the effects of higher-level “nesting” 
predictors (like speaker gender or word frequency), but they cannot 
be accurate if there exist any individual effects of lower-level “nested” 
predictors (like speaker or word). Mixed-effects models are designed 
to take these multiple levels of variation into account at the same 
time. Because many predictors of interest are in a nesting relationship 
with speaker or word, mixed models give more accurate quantitative 
estimates of their effect sizes, and especially of their statistical 
significance. The problems with fixed-effects models are only 
exacerbated by the token imbalances that exist across speakers and 
words in naturalistic speech, while mixed-effects models handle these 
imbalances well. This article demonstrates these and other advantages 
of mixed models, using data on /t, d/-deletion taken from the 
Buckeye Corpus as well as other real and simulated data sets. 

Introduction 
In recent years, it has become popular to analyze 
sociolinguistic data with mixed-effects regression 
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models (Jaeger and Staum 2005, Johnson 2009, Gorman 
2010, Drager and Hay 2012, Tagliamonte and Baayen 
2012). However, the traditional fixed-effects variable rule 
(VARBRUL) model – implemented using the software 
called GoldVarb (Sankoff et al. 2012) – is still being used 
(Bowie 2012, McQuaid 2012, Pereira Scherre 2012, and ). 
Though the tide may have turned against fixed-effects 
models, the fundamental reasons to prefer mixed models 
are not all widely understood. This is because the 
literature on mixed-effects modeling has tended to 
discuss data from quite different disciplines, and it has 
often relied on very technical statistical arguments 
(Tagliamonte 2011 is an exception). In addition, it has 
occasionally been suggested (Paolillo 2013) that fixed-
effects models fit in GoldVarb can achieve similar results 
to mixed-effects models. 

This article provides a clear, data-based explanation 
of why mixed-effects models give better results than 
fixed-effects models. After a theoretical overview, the 
article goes on to analyze portions of Becker’s (2009) 
data from the Lower East Side of Manhattan, and data 
from the Buckeye Corpus of Columbus, Ohio, speech (Pitt 
et al. 2007). These real examples are then crucially 
supplemented by simulated data sets, where the 
underlying population parameters are known. Through 
these examples, the article shows how common 
configurations of data lead to divergent analyses, and 
why the mixed-effects approach is almost always more 
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accurate. The final section considers some other benefits 
of the approach. 

Whether it is a set of sociolinguistic interviews, a 
collection of historical texts, or a corpus of newspaper 
articles or Twitter posts, natural language data has a 
structure that calls for mixed-effects modeling, because 
of three related issues: grouping, nesting, and imbalance. 
The several thousand tokens (also known as observations 
or data points) in a typical naturalistic sociolinguistic data 
set do not all come from the same speaker, nor does 
each token come from a separate speaker. Instead, there 
might be a hundred or so tokens drawn from ten or 
twenty speakers. A similar grouping structure exists at 
the level of the word, where there might be several 
hundred different word types. An infrequent word might 
be represented by only one or two tokens, but the most 
common words will occur hundreds or thousands of 
times. This by-word imbalance will always occur in 
natural language; imbalance by speaker is also very 
likely, unless data were thrown away to ensure an equal 
number of tokens per person. 

By itself, such data imbalance would not pose a 
problem for a fixed-effects regression analysis, if a 
researcher were asking questions about individual 
speakers or words. However, linguists are usually more 
interested in groups of speakers or words: they might 
want to compare men’s and women’s pronunciation of 
/s/, or see how stressed /æ/ is realized differently 
depending on the following consonant. These group-
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level variables have a nesting relationship with the 
individual-level variables: speaker nests in gender (each 
speaker is either male or female, at least for the purposes 
of exposition here), and word nests in following 
consonant (each word has one particular consonant 
following /æ/). 

The issue of nesting – the fact that the categories of 
interest (e.g. female speakers) are represented in the 
data by several individuals, each of whom contributes 
several tokens – would be benign if there were no 
individual-level variation. If this were true, there would 
be no more of a correlation among tokens from different 
speakers than among tokens from the same speaker. If 
this were true, the results of fixed-effects regression 
models would be statistically valid. But the assumption of 
no individual differences is almost surely false. 

It has long been known (Gauchat 1905, Guy 1980) 
that individual speakers can vary in their overall rate or 
level of use of linguistic variables, over and above any 
differences attributable to the social groups to which 
they belong. On the other hand, it has been argued – or 
simply assumed – that individuals in the same speech 
community share linguistic constraints on variable 
processes (i.e. the following consonant affects /æ/ for all 
speakers in the same way). 

As far as word-level grouping is concerned, 
variationist sociolinguistics in the Labovian tradition has 
been more open to the idea of the occasional lexical 
exception than to the notion of wholesale by-word 
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variation, although the latter is a key prediction of 
usage-based theories (Pierrehumbert 2001). And some 
recent work (Baayen and Milin 2010) has shown that 
social factors can affect individual words differently (e.g. 
the difference in /s/-pronunciation between men and 
women might be different, depending on the word). 

Fixed-effects models like VARBRUL/GoldVarb, in use 
since the early 1970s, assume the non-existence – and 
furthermore impede the discovery – of all four of these 
types of variation: rate/level by speaker, linguistic 
constraints by speaker, rate/level by word, and social 
constraints by word. It now seems likely that all four 
types of variability do exist. At the very least, the first 
type was known to exist, but recall that when fixed-
effects regression models were first introduced, they 
were the best statistical tools available. The results they 
have delivered, while perhaps suboptimal from a modern 
perspective, are hardly invalidated by the “illegal” pooling 
together of tokens from disparate speakers.  

Today, however, mixed-effects regression models 
provide a much better alternative for analyzing natural 
language data. Using random intercepts – the focus of 
this article – mixed models can accommodate potential 
rate/level variation, and using random slopes, they can 
also accommodate constraint variation. But they do not 
assume that such variation exists. Including random 
effects makes for far more accurate estimates of the 
significance and size of the nesting effects, but they also 
allow the linguist to measure the variation – or lack 

Natural Language Data Calls For Mixed-Effects Models 

 6 

thereof – among the nested units (speakers, words, texts, 
sentences, etc). Thus the methodology of mixed-effects 
models not only improves the performance of established 
research designs, but also opens up new research areas 
of considerable theoretical interest. 

Mixed Models for Language Data 
Linguists studying natural language typically make many 
observations of any given linguistic variable, whether 
phonological, syntactic, or another type.1 They also 
observe elements of the context in which the variable 
occurs – not only the linguistic context, but the entire 
speech setting, including attributes of the speaker. It is 
then possible to estimate the size and significance of the 
effects of these contextual elements, known as 
predictors. For example, one could explore how post-
vocalic /r/ is realized differently by men and women (a 
so-called social or external factor, of which gender, age, 
socioeconomic class, and ethnicity are typical examples) 
or how a word-final /t, d/ is affected differently 
depending on the preceding context (a so-called 
linguistic or internal factor, which can be a phonological 
property of the environment, a grammatical property like 
the morphological/syntactic status of the word, or a 
lexical property like word frequency).  

The “principle of multiple causes” (Bayley 2002) 
means that the variation observed for any linguistic 
variable has many sources. Some variation arises because 
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speakers behave differently from one another. This could 
be idiosyncratic in origin (where “idiosyncratic” may 
include effects of unknown causes), or relate to 
demographic categories, a subset of social/external 
factors that will be called between-speaker predictors 
here. Between-speaker variation applies to most, if not 
all, linguistic variables. Variation can also arise because 
individual words behave differently. Again, this could be 
attributed to lexical idiosyncrasy, or else to between-
word predictors: phonological and other properties of the 
words in which the variable occurs. 

 There are other predictors which are neither 
between-speaker nor between-word; that is, they can 
vary even within a given speaker-word combination. 
These include the effects of adjacent words (usually 
considered linguistic/internal), and the effects of speech 
style and speech rate (both usually considered 
social/external). And even taking these into account, in 
exactly the same environment, a speaker does not 
pronounce a word the same way every time: some 
variation always remains at the level of the token. 

Multiple regression is a statistical method that 
quantifies the simultaneous effects of several contextual 
predictors on a response. When the response is a 
measurement on a continuous scale (e.g. of vowel 
formant frequencies), this is called linear regression. 

Linear regression performs perfectly only when 
several assumptions are met; these include linearity (a 
given change in a predictor should affect the response a 
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given amount), independence (the model’s errors – the 
deviations of the observations from the model’s 
predictions – should be independent), homoskedasticity 
(the variance of the errors should not depend on the 
values of the predictors), and normality (the errors 
should be normally distributed). We also assume that no 
important predictors are omitted (nor any unimportant 
ones included), that the predictors are measured 
accurately, and that none of the predictors are collinear 
(perfectly correlated) with each other. 

In practice, regression can never manage to include 
every relevant predictor, nor will the predictors it does 
include ever be perfectly uncorrelated, but the results of 
the technique will be more or less valid if these and the 
other assumptions are not grossly violated. 

With a binary response – the result of a choice (if not 
always a conscious one) between two alternatives – we 
use logistic regression. This models the natural logarithm 
of the odds of the response – the log-odds ln(p/(1-p)), 
where p is the probability of the response – as a linear 
function of the predictors. Logistic regression models do 
not have errors of the same type as linear regression 
models, so most of the above assumptions do not apply. 
Instead of a direct linearity assumption, we assume that 
the log-odds of the response is affected linearly by the 
predictors. We still assume that the observations, 
conditional on the predictors, are independent, that there 
are no important omitted predictors, and that none of the 
predictors are perfectly collinear. 
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(A log-odds of zero corresponds to an odds of 1, or 
1:1, meaning a 50% chance of an outcome occurring. An 
increase of 1 in the log-odds brings the probability to 
73.1%, and another increase of 1 brings it to 88.1%. Note 
that equal changes in log-odds do not always correspond 
to equal changes on the probability scale.) 

Though logistic regression has its roots in the 19th 
century (Cramer 2002), it was developed further in the 
mid 20th century (Cox 1958) and came to be widely used 
in the 1970s; VARBRUL 2, the second major version of 
the variable rule program for sociolinguists, was written 
in 1975 (Rousseau and Sankoff 1978). 

Thirty-five years later, many sociolinguists still use a 
version of VARBRUL, called GoldVarb. It is limited to 
logistic regression with categorical predictors, not 
allowing for continuous dependent or independent 
variables. Nor does it easily allow for interactions among 
predictors, among other disadvantages (Johnson 2009). 
However, GoldVarb does have a flexible method of 
recoding predictors - and the ability to “slash” or omit 
some tokens in the estimation of some coefficients. 

A flaw in the usual method of analysis using 
VARBRUL/GoldVarb is that correlations among tokens can 
lead to a violation of the independence assumption. This 
assumption says that in a regression, each observation 
should deviate from the model’s prediction randomly and 
independently. But if tokens are correlated according to 
individual speaker and/or word, then this assumption 
cannot be met, unless speaker- and word-level variation 
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are modeled explicitly, something that users of VARBRUL 
can do only with difficulty and in a limited range of 
circumstances. 

Of course, from the early years of variationist 
sociolinguistics, data from multiple speakers and words 
has been pooled together for analysis. While obscuring 
individual differences, this method revealed intricate 
patterns according to higher-level predictors, such as 
social class (the working class uses less post-vocalic /r/ 
than the middle class; Labov 1966) and word stress 
(stressed syllables retain more post-vocalic /r/ than 
unstressed syllables; Wolfram 1969). But perhaps 
appreciating the statistical issues involved, these studies 
did not try to assess the statistical significance of the 
differences. 

 To illustrate the subtle but substantial problems 
arising from pooling, we will examine a corpus of /t, d/-
deletion that shows substantial grouping by speaker and 
word. The corpus was extracted by Josef Fruehwald from 
the Buckeye Corpus (Pitt et al. 2007), which consists of 
phonetically transcribed recordings of casual speech 
from 40 white speakers from the Columbus, Ohio area: 
20 older (10 male and 10 female), 20 younger (10 male 
and 10 female). 

In this corpus, the 13,664 tokens of word-final /t/ 
and /d/ are moderately unbalanced across speaker, 
ranging from 135 to 519 tokens per person. If we 
accounted for all the relevant between-speaker 
predictors – gender, age, social class, etc. – we might 
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find that speakers did not individually favor or disfavor 
deletion, and furthermore, that all speakers had the same 
constraints (predictor effects) on deletion. If not, though, 
then there would be correlation among each speaker’s 
tokens, violating the independence assumption of a 
regression model – unless a predictor for individual 
speaker were included. 

There are 905 distinct words in the corpus. As this is 
naturalistic speech, the data is highly unbalanced across 
word, with almost half the word types occurring only 
once while several word types occur more than 1000 
times. After taking into account all the between-word 
predictors we could think of – including lexical frequency, 
as recommended since Hooper (1976) and in exemplar-
theoretic work like Pierrehumbert (2001) – would all word 
types then behave alike? Perhaps they would, but it 
seems rash to assume they do without even checking. 

The predictors in ordinary regression are called fixed 
effects, and fixed effects for nested predictors cannot be 
properly estimated at the same time. Predictors are 
nested when the value of one is completely predictable 
from the value of the other. For example, the predictor of 
speaker is nested in the between-speaker predictor of 
gender, because any token from “Mary Jones” also comes 
from the larger “female” grouping. 

Regardless of the real magnitude of the gender effect, 
an ordinary regression model – a fixed-effects model – 
could fit the data equally well using a gender parameter 
of any size: the individual-speaker coefficients would 
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simply shift up and down to compensate for any change 
in the gender coefficient. Even if speaker identity and a 
nesting “social factor” like gender actually both 
influenced the response, a fixed-effects regression’s 
results would be misleadingly arbitrary – even 
“meaningless” (Guy 1988:128) – because of the two 
predictors’ maximal non-orthogonality. 

For example, imagine we measured the voice pitch of 
three men and three women and obtained mean values of 
100 Hz for man A, 120 Hz for man B, 140 Hz for man C, 
180 Hz for woman D, 200 Hz for woman E, and 220 Hz 
for woman F. We might reasonably say that estimated 
male pitch is 120 Hz, estimated female pitch is 200 Hz, 
and each gender’s speakers diverge from the norm by -
20, 0, and +20 Hz. This intuitive solution, like the 
mixed-effects models below, minimizes the size of the 
speaker effects. 

But a fixed-effects model has no way of privileging 
this solution above one where, for example, the 
estimated pitch for both genders is the same, 160 Hz, 
and the speakers deviate from the norm by -60, -40, -
20, +20, +40, and +60 Hz. In fixed-effects regression, 
nested predictors and nesting predictors compete on an 
equal footing to account for the same variation. The 
relative contributions of individual speaker and a 
between-speaker variable like gender cannot be 
accurately determined. 

Fixed-effects regression encounters the same 
problem if the nested predictor is the word, and the 
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nesting predictor is a between-word variable. Another 
common case of nesting involves experimental stimuli or 
items, which can be nested in between-item predictors, 
depending on the design of the experiment. 

The specific configuration of predictor variables, as 
derived from a given research design, determines 
whether nesting relationships exist. If there are no 
between-speaker predictors, then the speaker variable is 
not nested and may be modeled as a fixed effect. But if 
there are between-speaker predictors, speaker nests 
within them, and fixed-effects regression will be unable 
to model both levels simultaneously and accurately. 

While the nesting problem may have been recognized 
early on (Rousseau and Sankoff 1978), along with the 
related issue of temporal correlation among tokens 
(Sankoff and Laberge 1978), it has received relatively 
little attention since (but see Van de Velde and van Hout 
1998; Sigley 1997, 2003). It was recognized that in using 
VARBRUL/GoldVarb, one had to choose between 
including a speaker factor group and one or more 
between-speaker factor groups. Most researchers would 
select the latter option, but without recognizing the 
statistical ramifications. Similarly, researchers included 
between-word factor groups, necessarily forgoing any 
factor group for word itself. 

For Guy (1980), addressing the relationship between 
the individual and the group, the only individual 
differences that matter are differences in constraint 
estimates and constraint orderings, which are seen to 
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stem either from insufficient data or dialect differences. 
Within a given dialect, constraints are thought to be quite 
uniform across individuals, assuming enough data has 
been collected to estimate them accurately. Whether to 
“lump together the data for several people” (20) is 
decided on the basis of whether they share constraints. 
Lumping together the data for individuals who differ only 
in their overall level or rate of a variable is implied to be 
benign. 

As will be shown, there are actually several negative 
consequences to such lumping or pooling, a practice that 
may relate to the Labovian emphasis on the primacy of 
the speech community, with statements like “the 
community is conceptually and analytically prior to the 
individual” (Labov 2012: 266) or even “there are no 
individuals from the linguistic point of view” (Gordon 
2006: 341). 

Another reason that individual differences have 
largely been ignored is that they are thought to mainly 
concern the level, or rate, of variation: a topic often held 
to be less important than constraints on variation (Erker 
and Guy 2012: 546). But in order to properly study 
groups and constraints, we must attend to individual 
variation in rates. Not doing so can impair our calculation 
of the significance of group differences as well as our 
estimation of the magnitude of the constraints 
themselves. 

In another early study of /t, d/-deletion, Neu (1980) 
analyzes the word and separately, stating that high-
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frequency lexical items are more prone to deletion and 
noting that “[i]f these items are not considered 
separately, one is likely to conclude that the rule [of 
deletion] applies with a much higher frequency…or else, 
for example, that ‘preceding /n/’ has a much greater 
effect on deletion than it does” (53). In part, Neu is 
calling for a word frequency effect in the model, but the 
point about the interaction between a word effect (and) 
and a between-word effect (preceding /n/) foreshadows 
a point made below. 

Guy (1991) includes the individual speaker in 
modeling /t, d/-deletion, but since no between-speaker 
predictors are considered at the same time, there is no 
nesting problem.  Again, the alternative of lumping 
together data from multiple speakers who differ in their 
rates of deletion is viewed as unproblematic. 

The statistical theory, and especially the 
computational means, to better address nesting have 
existed only recently. In the past, efforts have been made 
to limit data imbalance across words by discarding 
tokens from frequent lexical types (Wolfram 1993: 213-
214), but this only addresses one of the problems posed 
by nesting. Some have directly recommended omitting 
the nested predictor of speaker – and implicitly that of 
word – from the final models (Guy 1988: 128, 
Tagliamonte 2006: 182), but, as noted above, this 
assumes that individual-speaker and individual-word 
variation do not exist. 
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VARBRUL practitioners have acknowledged that at 
least speaker variation does exist, even at times fitting 
separate models to individual speakers’ data (e.g. Guy 
1980, 1991), but they have not tended to recognize that 
by pooling their data, they make a “dangerous 
aggregation” (Van de Velde and van Hout 1998; see also 
Gorman 2009). But by including predictors for speaker 
and word, a properly-specified mixed-effects model – or 
mixed model for short – is valid whether by-speaker and 
by-word variation exist or not. 

This is possible because while an ordinary regression 
model has only fixed effects, mixed models have random 
effects as well. There are several differences between the 
two types of effect. One distinction is that the fixed effect 
levels (e.g. male, female) are inherently limited and would 
likely recur in any extension or replication of a study, 
while the random effect levels (e.g. Stacy, Rick) might 
well not. In theory, the random effect levels have been 
sampled randomly from a larger population, but any 
units chosen to represent a larger set can work as 
random effects – especially when we are more interested 
in accounting for the units’ variability than in the units 
themselves. 

It is not always obvious whether to treat some 
predictors as fixed or random, nor does it always matter 
much to the results. However, when there is nesting, the 
nested predictor (e.g. speaker) must be random, while 
the nesting predictor (e.g. gender) should be fixed, 
unless it is nested in another predictor. The model-fitting 
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software penalizes the size of the random effects, 
allowing a principled partition of variance between the 
levels (see Pinheiro & Bates 2000 for more details). 

Although the discussion here often simplifies matters 
by discussing one fixed effect at a time, real mixed-
model analyses will contain several fixed effects (and 
often their interactions). As in any regression, all relevant 
predictors must be included. Note that several fixed 
effects (e.g. gender, class, age) can share one random 
effect (e.g. speaker). 

The statistical theory behind mixed models is not 
particularly new, but the computational techniques for 
fitting such models developed rapidly in the 1980’s and 
1990’s. Pinheiro and Bates (2000) achieved a 
comprehensive implementation of mixed models in the R 
statistical software environment (R Core Team 2012). A 
further advance occurred with the 2003 introduction of 
the package lme4 (Bates et al. 2012). Its modeling 
function glmer() can handle large data sets, and fit 
models with crossed random effects, enabling the 
linguist to consider both speaker and word variation at 
the same time. This is the function “under the hood”  of 
Rbrul (Johnson 2009), a menu-based front end interface 
that facilitates mixed-effects modeling (as well as fixed-
effects modeling) in R. 

 The simplest type of random effect is a random 
intercept. For example, if we have a continuous response, 
the intercept for each speaker would be an estimate of 
their deviation from the prediction made for their group 
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(e.g. old working-class males). If the response is binary, 
the intercept (measured in log-odds) represents how 
much an individual favors one or the other outcome, 
again compared to the group prediction. 

Taken together, the speaker intercepts are assumed 
to follow a normal distribution. The standard deviation or 
spread of this distribution is the main random effect 
parameter. The estimated variance of a speaker random 
intercept can be large or small, or even zero, meaning 
the speakers in the sample diverge no more than would 
be expected by chance. 

A more complex type of random effect is the random 
slope, which allows speakers (or words) to differ with 
respect to their fixed effect constraints. For example, 
speakers might not only vary in favoring or disfavoring 
post-vocalic /r/ overall, but also vary in the way they 
shift their use of /r/ across styles: casual speech, careful 
speech, reading passage and word list. The first type of 
variation would be captured with a random intercept, the 
second type with a random slope. And if the data reflects 
that all speakers do in fact style-shift in a similar way, 
then the random slope term would be small, even zero. 

 When we want to know if any term in a model is 
significantly different from zero, we can perform 
hypothesis testing, where we compare two nested 
models. These models are identical except one includes a 
predictor that the other does not. This is the predictor 
whose effect we are testing. 

Daniel Ezra Johnson 

 19 

We can compare models that differ in their fixed or 
random effects, usually to test whether more complex 
models are justified, and thus whether predictors are 
significant. In such hypothesis testing, different statistical 
issues arise depending on whether the model is linear or 
logistic, and whether we are testing the significance of  1) 
a fixed effect in an ordinary fixed-effects model, 2) a 
fixed effect in a mixed model, or 3) a random effect. The 
following recommendations summarize the usage 
currently accepted by the R-sig-ME mailing list (FAQ at 
http://glmm.wikidot.com/faq), although statistical 
recommendations and software implementations are 
always evolving. 

1) Performing fixed-effects linear regression in R, we 
would fit the two models with lm() and compare them 
with an F-test using the (confusingly named) anova() 
function. For fixed-effects logistic regression, we fit the 
models with glm() and a perform a likelihood-ratio test 
with anova(), which is effectively the same thing VARBRUL 
does. 

2) To test a fixed-effect term in a linear mixed model, 
the Markov chain Monte Carlo (MCMC) method, often 
implemented by mcmcsamp() or pvals.fnc(), may be 
preferred over the likelihood-ratio chi-squared test 
(Baayen et al. 2008; but see Barr et al. 2013). For fixed-
effect terms in logistic mixed models, likelihood-ratio 
tests are considered more acceptable, though they may 
still be anti-conservative (p-values too high) unless the 
number of observations (tokens) and the number of 
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random effect levels (speakers/words) are both large 
(Bolker et al. 2009). Bootstrapping (Efron 1979) and 
simulation methods (Jones et al. 2009) are another way 
to obtain significance estimates, in all cases. 

3) When we test a random-effect term, we are testing 
whether a variance parameter (e.g. the amount that 
speakers vary) is significantly different from zero. Since 
the variance cannot be negative, we have to make an 
adjustment to the likelihood-ratio test, which in the 
simplest case – testing a random intercept – means 
dividing the p-value in half (Stram and Lee 1994). The 
RLRsim package (Scheipl et al. 2008) provides a more 
general way of testing random effects. Some (e.g. Barr et 
al. 2013) argue against testing (let alone removing) 
random effects that reflect a study’s design. 

If we hold the random effects constant, adding 
significant fixed effects will generally cause the estimates 
of individual-speaker and individual-word variation to 
decrease. Decreasing this variation toward zero may be 
an attractive goal, but assuming it to be zero from the 
start – as fixed-effects analyses have unwittingly done – 
is not logical. 

Speakers and words are the most obvious grouping 
factors in naturalistic linguistic data, and crossed random 
intercepts for these two factors are generally appropriate, 
even though fitting such models may require a larger 
amount of data to be collected. 

Whether to use random slopes depends on the fixed-
effect predictors involved. For instance, speech style 
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might well have a different effect for different speakers, 
and plausibly for different words too, while a 
(phonetically-grounded) following-context effect would 
seem less likely to affect individual speakers or words 
differently. 

If there is any reason to suspect that individual words 
or speakers might vary in their average realization of a 
continuous response variable – or in their rate of use of a 
binary response – then a random intercept capturing that 
variation should be included in the model. And if we 
suspect that speakers or words might vary in their 
response to a predictor, a corresponding random slope 
(or slopes) should be included as well (Schielzeth & 
Forstmeier 2009; Barr et al. 2013), although in practice 
such “maximal” models can be difficult and/or slow to fit. 

The tradition of modeling variation in sociolinguistics 
has usually proceeded quite differently. While the 
literature has acknowledged that individual speakers 
from the same speech community (and demographic 
group) can vary in terms of rates or input probabilities 
(intercepts), it has often been claimed that speakers in a 
community do not vary in their constraints (slopes) (Guy 
1991: 5). Both types of variation have been omitted from 
fixed-effects VARBRUL models. As for by-word variation, 
it has rarely been considered for rates or constraints. In 
all these cases, the omissions have substantial 
consequences. 

For the sake of simplicity in exposition, the next 
sections largely set aside the potential benefits of 
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random slopes, concentrating on the clear benefits of 
random intercepts. This is not to be interpreted as saying 
random slopes are never needed. Indeed, the section 
dealing with the Buckeye Corpus does include a brief 
assessment of the use of random slopes. 

Fixed-Effects Models Give Worse 
Results Than Mixed-Effects Models 
This section will illustrate four ways in which applying 
ordinary fixed-effects models to grouped data can cause 
error. Only individual-speaker grouping will be 
considered; however, similar pitfalls would apply if we 
ignore individual-word variation, or any other correlation 
among observations in a data set. So when the term 
“speaker” is used from now on, the reader may also wish 
to imagine “word”, “item”, or some other repeated unit. 

Fixed-effects models overestimate the 
significance of between-speaker predictors 

Perhaps the most important danger of not using mixed 
models involves the significance of between-speaker 
predictors. If individual speakers differ greatly, then even 
randomly-chosen sub-groups can differ substantially, 
just by chance. So can men and women, old and young 
speakers, or any other division – again, just by chance. 

Ignoring individual-speaker variation “may inflate the 
significance of statistical tests” (Sigley 2003: 228), 
leading to a high rate of Type I error, meaning that a 
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chance effect in the sample is mistaken for a real 
difference in the population. Mixed models keep the Type 
I error rate near where it should be (.05 is the usual 
alpha, or proportion tolerated). 

At the same time, there is an unavoidable tradeoff, in 
that mixed models are more prone to Type II error, where 
a real population difference does not show up clearly or 
consistently enough in the sample to be recognized as 
statistically significant. If individual-speaker variation is 
at a high level, we cannot hope to discern small 
population differences without observing a large number 
of speakers; the smaller the group difference, the more 
individuals are needed (Johnson 2009). 

We start by observing a single predictor, gender, in 
the Buckeye /t, d/-deletion corpus, where there are 20 
male and 20 female speakers. Of course, the results of 
such a simple analysis will not be as accurate as if we had 
included other relevant predictors, such as age. But given 
the various problems that arise with even the simplest 
fixed-effects models, we can imagine that the problems 
would be compounded in a more complex analysis, and 
be more difficult to understand. Working with a single 
predictor, at the cost of some realism, we can more easily 
see the improvements offered by mixed models. 

The response variable is binary, reflecting tokens of 
final /t, d/ – preceded by other consonants – that are 
either deleted, or retained as plain or glottalized stops. 

The male speakers deleted the /t, d/ in 3805 of 6962 
tokens (54.7 percent), while the female speakers deleted 
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it in 3496 of 6702 tokens (52.2 percent). Ordinary 
logistic regression returns a coefficient telling us that the 
male speakers favor deletion by 0.100 log-odds (this 
follows directly from the raw percentages, although the 
same difference in percentages does not always 
correspond to 0.100 log-odds).  This quantity is the 
unstandardized effect size of gender. 

(Note: there are also several standardized measures of 
effect size that make it easier to compare between 
predictors and between studies: for example, Cohen’s d, 
Hedges’ g, and Glass’s delta. However, in this article the 
term effect size is used to simply mean a regression 
coefficient or the difference between coefficients, that is, 
the magnitude of an predictor’s effect.) 

If we perform a likelihood-ratio test, comparing the 
model with gender to a null model with no predictors, we 
get a p-value of 0.0035. This implies that it is very 
unlikely that the observed gender difference is due to 
chance. That is, according to a fixed-effects model like 
VARBRUL, gender is a significant predictor of deletion. 

The left panel of Figure 1 reinforces this impression. 
It shows one circle for the male speakers and another, 
noticeably lower down, for the female speakers. (The area 
of each circle is proportional to the number of tokens it 
represents.) 
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In the right panel, however, we see the same data broken 
down by individual. This reveals that both male and 
female speakers have a wide range of deletion rates, and 
that the two ranges almost completely overlap. Any 
gender difference now appears to be quite contingent on 
the particular speakers in the sample. If a few speakers 
had been missing, for example, we might not have seen 
any effect. 

We can formalize this by assessing the significance of 
gender with a mixed-effects model. When we use a 
random intercept for speaker, the likelihood-ratio test 
returns a p-value of 0.67, nowhere near the usual 0.05 
threshold for statistical significance. The mixed model 
says that while speakers vary, there is little evidence for a 
gender difference. While /t, d/-deletion is a stable non-
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standard feature, thus one we might expect to be used 
more by men (Labov 2001: 266), our revised conclusion 
of no gender difference accords better with the actual 
patterning of the speakers on Figure 1. 

Fixed-effects models inaccurately estimate 
the effect sizes of between-speaker 
predictors, when some speakers contribute 
more data than others 

In estimating a difference between two groups of 
speakers, we should ideally treat each individual about 
equally (“averaging by speaker”), assuming we have 
enough data to accurately evaluate the response for each 
speaker.  

Fixed-effects regression distorts group differences by 
ignoring data imbalance and treating each token equally 
(“averaging by token”), thereby potentially counting some 
speakers much more than others. We return to Figure 1 
to illustrate this distortion. 

The left panel of Figure 1 ignores the fact that 
different speakers contributed different numbers of 
tokens. We have an average deletion rate of 54.7 percent 
(3805/6962) for the data from male speakers, compared 
with 52.2 percent (3496/6702) for the data from female 
speakers. The gender effect size is 0.100 log-odds, as 
noted above. 

But if we count speakers equally and simply average 
their deletion percentages, the gender difference comes 
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out less than half as large: 53.1 percent for the males vs. 
52.0 percent for the females, an effect size of 0.040 log-
odds. This happens because the males with higher 
deletion rates contributed more tokens (a mean of 393 
tokens each for the 10 highest-deleting males), and the 
males with lower deletion rates had fewer tokens (a mean 
of 303 tokens each for the 10 lowest-deleting males). 
Whether these differences are due to chance or some 
relationship between volubility and style, they have the 
effect of skewing the males’ estimate higher in the fixed-
effects model. 

A mixed model with a random speaker intercept 
treats speakers mostly equally; therefore it also returns a 
much smaller gender difference than the fixed-effects 
model. The mixed model effect size is 0.053 log-odds. 

The inaccuracy of fixed-effects models, faced with 
token imbalance, is a general problem, but its direction 
can vary; here, the effect size of gender was 
overestimated, but with other data, the size of a 
between-speaker effect could be underestimated. 

    Another example of effect size misestimation can 
be seen in the data on which Becker (2009) was based. 
This comprises 3000 tokens of postvocalic /r/ from 
seven New York City speakers. The data from the five 
females has 654 /r/’s out of 1842, or 35.5 percent. The 
data from the two males has 476/1158 /r/, or 41.1 
percent. Working with the pooled data, a fixed effects 
model estimates the gender effect at 0.24 log-odds. 
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But this does not take into account that the woman 
with the lowest rate of postvocalic /r/ (19.9 percent) 
provided the most data (492 tokens), while one of the 
women with the highest rates of /r/ (51.6 percent) 
produced the least amount of data (248 tokens). When 
the data is pooled, these two women both cause the /r/ 
rate for females to be underestimated, in turn 
exaggerating the difference between women and men. By 
contrast, a mixed model with speaker as a random effect 
treats speakers more equally, yielding a smaller gender 
effect of 0.20 log-odds. 

Balanced data, with equal numbers of tokens per 
group, may arise in certain experimental contexts, but 
sociolinguists’ use of natural speech virtually ensures 
that balance will be rare in our data sets. We can limit 
imbalance artificially, by placing a ceiling on the tokens 
from a given speaker or of a given word, but this 
approach throws away valuable data arbitrarily, 
introducing its own problems. One reason mixed models 
are preferable is because they handle groups in a 
balanced way, whether or not there is balance at the level 
of the token. 
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Fixed-effects models inaccurately estimate 
the effect sizes of within-speaker predictors, 
when speakers do not share the same 
balance of data 

The discussion so far has revolved around the 
consequences of ignoring individual-speaker variation as 
it relates to between-speaker predictors. But within-
speaker predictors – those that are not constant in a 
given speaker’s data – can also be misestimated by 
failing to take speaker variation into account. This is 
clearly true if the predictors’ effects vary from speaker to 
speaker – a situation that calls for random slopes – but it 
can also happen when the variability applies only to 
speakers’ intercepts. 

The issue involves another type of data imbalance. 
Looking at speech style, for example, we might have 
cause for concern if different speakers were represented 
by different amounts of data in different styles. For 
example, suppose we were interested in the 
pronunciation of a vowel across three speech styles, and 
the number of tokens in the reading passage and word 
list were constant across speakers (by design), but the 
amount of spontaneous speech elicited from each person 
was (naturally) somewhat different. Such a data set for a 
speaker is the typical result of a Labovian sociolinguistic 
interview. 

In this example, we are measuring the height of the 
vowel /ae/ by means of the first formant. Formants are 
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acoustic resonances in the vocal tract that are 
characteristic of vowel quality. The first formant, or F1, 
corresponds inversely to a vowel’s height, so high vowels 
like [i] have lower F1 values than low vowels like [a]. We 
might measure F1 for the /ae/ vowel in the Northern 
(U.S.) Cities – e.g. words like trap and bath in Chicago or 
Detroit, where raising of the /ae/ vowel is a change in 
progress. Lower F1 values for /ae/ represent more 
advanced participation in the Northern Cities Shift. 

Imagine that some speakers, who happen to have a 
low F1 (in all styles), also happen to produce more 
spontaneous speech. If we pool the data, the group 
estimate for F1 in spontaneous speech will be biased 
downward. The combination of speaker variability and 
token imbalance will end up being mistaken for an effect 
of style. 

Using a simulation, we can illustrate this point while 
ensuring that speakers have the same constraints: speech 
style affects each speaker in the same way. Unlike real 
data, the population parameters of simulated data are 
known, so when we fit both fixed-effects and mixed-
effects models to the same data, we can directly observe 
which estimate is more accurate. Using the R software 
and the parameters described below, we will run the 
simulation 1000 times (1000 runs). Each time, we 
randomly generate the data sets, fit a fixed-effects and a 
mixed-effects model to the same data, and compare the 
results. (Note that the parameters of the simulation are 
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for the purposes of illustration, rather than trying to 
represent a plausible style effect on the F1 of /ae/.) 

In each data set, there are 10 speakers, whose 
intercepts differ: their average F1 values are normally 
distributed with a mean of 500 Hz and a standard 
deviation of 100 Hz. All speakers produce a balanced 50 
tokens in word list style and 50 tokens in reading 
passage style. But for spontaneous speech, there is an 
imbalance: two speakers produce 25 tokens, six produce 
50 tokens, and two produce 75 tokens.  

 Between styles, all speakers differ in the same way: 
compared to their reading passage tokens, every 
speaker’s word list tokens average 50 Hz higher in F1, 
and their spontaneous speech tokens average 50 Hz 
lower. Within each style, each speaker’s productions vary 
randomly with a standard deviation of 50 Hz.  

In the two styles where the data is balanced across 
speakers, the fixed-effects and mixed-effects 
coefficients are unbiased and always nearly identical: 
close to 0 Hz for reading passage, and +50 Hz for word 
list. For the imbalanced, spontaneous speech style, both 
models are unbiased, with a mean effect near -50 Hz, 
but while the mixed model estimate is usually quite close 
to that figure, the fixed-effects estimate varies widely. 
In 821 of the 1000 runs (that is, a large majority), the 
mixed-effects estimate of the effect of spontaneous 
speech was closer than the fixed-effects estimate to the 
underlying parameter of -50 Hz. The median difference 
between the models was 5.8 Hz. In the other 179 runs, 
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where the fixed-effect estimate was closer to -50 Hz, the 
median difference between models was only 1.7 Hz. 

The fixed-effects estimate is least accurate when the 
speakers with more tokens of spontaneous speech have 
much higher or lower F1 means than those with fewer 
tokens of spontaneous speech. If the two groups have 
similar means, there is little difference between models. 

Figure 2 shows how token imbalances affect four 
selected runs. In run 624, the low position of one large 
circle (speaker with 75 spontaneous tokens) and high 
position of both small circles (speakers with 25 
spontaneous tokens) make the fixed-effects estimate for 
spontaneous speech too low: -83 Hz. In run 733, the 
opposite configuration – large circles high, small circles 
low – makes the fixed-effects estimate too high: -17 Hz. 
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In run 738, none of the large or small circles have 
extreme means, so the fixed-effects estimate comes out 
exactly at -50 Hz. And in run 765, the large and small 
circles are all on the low side, cancelling each other out; 
the estimate is -49 Hz. But no matter the pattern of data 
imbalance, the mixed model adjusts to it, giving a 
coefficient near -50 Hz. 

Whenever we are interested in a within-speaker 
variable, and the distribution of that variable is different 
for different speakers, then unless individual-speaker 
variation is modeled explicitly (using a mixed model), we 
are at risk of an estimation error. 

This problem is most serious when there is a true 
correlation, not merely a chance association, between 
speaker intercepts and the distribution of a predictor. 
This seems likely to occur with stylistic predictors. 
Speakers who produce more standard variants overall 
might well produce less spontaneous speech in an 
interview. A fixed-effects model will then overestimate 
the style effect. Due to the “missing data” from the more 
standard speakers, spontaneous speech will appear to be 
less standard than it really is. 

We can illustrate this with the four older female 
speakers in Becker (2009). They each produced similar 
numbers of tokens in word list and reading styles (about 
15 and 80, respectively) but varied in their production of 
spontaneous speech. Maggie produced 143 tokens, Ann 
228, Lucille 298, and Mae 394. And the more 
spontaneous speech the women produced, the less they 
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used post-vocalic /r/ in all styles. Maggie had 52 percent 
/r/ overall, Ann had 24 percent, Lucille had 31 percent, 
and Mae had 20 percent. 

The data imbalance, where Mae is overrepresented 
and Maggie is underrepresented in spontaneous speech, 
causes a fixed-effects model without a speaker term to 
estimate a lower rate of /r/, and a more negative 
estimate, for that style. The fixed-effects estimate is –
0.32 log-odds for spontaneous speech, whereas a mixed 
model returns –0.25 log-odds. 

This section has shown that if there is data imbalance 
across a within-speaker variable, as well as overall 
variation by speaker, the interaction of the two can lead a 
fixed-effects model (lacking a speaker effect) to 
misestimate the within-speaker effect. This is much less 
likely to happen with a mixed-effects model containing a 
speaker random effect. 

Fixed-effects models underestimate the 
effect sizes of within-speaker predictors in 
logistic regression 

With a binary linguistic variable, we cannot model the 
response probability p as a linear function of the 
predictors, at the risk of predicting probabilities outside 
the legitimate range of 0 to 1. Instead, we typically use 
logistic regression, which models the log-odds of the 
response probability – ln(p/(1-p)) – as a linear function of 
the predictors. The log-odds ranges from -∞ if the 
probability is 0, to +∞ if the probability is 1. 
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If we graph the probability as a function of the log-
odds, for example x = ln(y/(1-y)), we get a characteristic 
S-shaped curve: the logistic function. Curves of this 
shape – representing processes that start slowly, speed 
up in the middle, then slow down as they approach 
completion – have been observed for changes in 
progress, especially in the field of historical syntax 
(Kroch 1989). In the study of diachronic change, then, 
logistic regression is fairly well motivated. Indeed, some 
simple mechanisms of competition between variants (or 
grammars) predict that rates of change should be 
proportional to p(1-p), which ensures that a plot of p 
against time is a logistic curve (Denison 2003). 

Logistic regression may not be as well motivated for 
modeling the synchronic constraints on binary variables. 
However, its use is all but universal. The following 
section illustrates a pitfall in applying fixed-effects 
logistic regression to grouped data. 

Imagine that speaker A uses a linguistic variant 50% 
of the time in a “disfavoring”, and 60% in a “favoring” 
context. This difference works out to 0.41 log-odds. 
Speaker B uses the variant 79% of the time in the 
“disfavoring” context, and 85% in the “favoring” context. 
Speaker B uses the variant more often overall, but the 
contextual difference is still 0.41 log-odds. Logistic 
regression will estimate the same effect for both 
speakers (the same slope, in regression terms), but their 
rates (or intercepts) will differ. 
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However, if we pool data from speakers A and B, we 
observe a contextual effect that is smaller than 0.41 log-
odds. For example, if A and B contribute equal amounts 
of data, their combined “disfavoring” context will show an 
overall rate of 64.5 percent (the average of 50% and 79%), 
and their combined “favoring” context will show a rate of 
72.5 percent (the average of 60% and 85%). And the 
difference between 64.5% and 72.5% is only 0.37 log-
odds, 9 percent smaller than 0.41. 

The greater the individual-speaker variation, the 
worse a mistake it is to pool the data before estimating a 
within-speaker logistic effect. Doing so averages 
speakers’ individual rates of variation on the probability 
scale instead of the log-odds scale (Mood 2010). 

Table 1 shows the average effect size from a repeated 
simulation of 50 speakers. Each speaker’s data consists 
of 100 “disfavoring” and 100 “favoring” tokens, and the 
difference between them (the underlying effect size) is 
now 1 log-odds unit. Speakers’ intercepts are normally 
distributed with a standard deviation of 0 (no speaker 
variation), 0.5, 1.0, 1.5, or 2.0 log-odds. 

The table shows the average effect size, over 100 
repetitions of the simulation, from a fixed-effects model 
with context as the only predictor, and from a mixed 
model that supplements the contextual fixed effect with 
a random intercept for speaker. 
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As usual, the fixed-effects model is accurate only when 
speaker intercepts do not vary. As speaker variance 
increases, its accuracy declines, slowly at first: a speaker 
standard deviation of 0.5 gives an estimate that is only 5 
percent too low. But a speaker standard deviation of 1 
gives a result that is 17 percent too low, and a speaker 
standard deviation of 2 gives a result that is 40 percent 
too low. By contrast, the mixed model always estimates 
an effect size that is very close to the ideal value. 

    Figure 3 is a graphical representation of this same 
effect. We see ten logistic curves (light-colored lines); 
each represents one speaker. The curves have very 
different intercepts (they range from -3.18 to +3.30, 
with a standard deviation of 2), but they all have quite 
similar slopes (ranging from 0.89 to 1.19). If we fit a 
mixed-effects logistic model with a random effect for 
speaker, the model returns an overall slope of 1.00. This 
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is very close to the average of the ten individual slopes, 
which is 1.01. On the other hand, if we pool the data and 
fit a fixed-effects logistic model, one which ignores the 
fact that the speakers have different intercepts, then the 
slope comes out much lower, at 0.59 (dark line). Again 
we see that in logistic regression, pooling data and 
ignoring between-speaker intercept variation (or omitting 
any other relevant between-speaker predictor) will always 
lead to the underestimation of within-speaker effects. 
 

 
 
The same point can be seen in Becker’s (2009) data, 
where speakers used less post-vocalic /r/ when talking 
about the Lower East Side neighborhood than they did 
talking about other topics. If we look at each individual’s 
data separately, we can isolate two speakers who show 
the same size topic effect: Mae and Lindsey each have a 
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topic effect of 0.41 log-odds. However, Mae produces 
only 20 percent post-vocalic /r/ overall (16 percent while 
talking about the LES, 23 percent otherwise), while 
Lindsey produces 60 percent /r/ overall (55 percent 
about the LES, 65 percent otherwise). 

Part of this difference is due to age – Mae is older – 
but some of it is likely to be more individual, as both 
speakers are higher-class, college-educated females. If 
we model these two speakers with a mixed model, the 
combined topic effect remains 0.41 log-odds. But if we 
run a fixed-effects model without speaker, the topic 
effect falls to 0.21 log-odds. 

A less dramatic illustration of the point comes from 
the seven-speaker /t, d/-deletion study of Guy (1991). 
With speaker taken into account in a mixed model, the 
morphological factor weights for deletion are .64 for 
monomorphemic words (lift), .55 for semi-weak past 
tense forms (left), and .32 for regular past forms 
(laughed). But when the speakers are pooled, the factor 
weights come out as .61, .57, and .33. This compressed 
span of weights is a consequence of ignoring individual 
differences in intercepts. 

The above discussions are concerned with both 
statistical significance and effect size. In all cases, we see 
that failing to model individual speaker variation, when it 
exists, leads to quantitative error. Analogously, leaving 
the individual word unmodeled leads to error in the face 
of individual-word variation. 
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Many VARBRUL practitioners have indeed omitted 
these grouping factors from their models, but individual-
speaker variation has not been totally ignored. Guy 
(1980) models each of his speakers independently at first 
– always a valid if potentially underpowered approach – 
but although he goes on to pool their data, his intent is 
not to examine between-speaker predictors, so at least 
one of the problems of speaker nesting is avoided. Guy 
(1991) also presents analyses for individuals as well as 
pooled data; the inherent problem with performing 
logistic regression on pooled data is revealed, as noted. 

More recently, Paolillo (2002, 2013) and Sigley (2003, 
2010) have developed elaborate ways to model predictor 
interactions within the framework of the GoldVarb 
software, creating what they claim to be hierarchical 
models. Aside from being extremely complicated to 
implement in Goldvarb, this elaboration of the fixed-
effects approach does not appear to overcome the key 
problem of how to partition variation between nesting 
and nested predictors. Preliminary experiments suggest 
that GoldVarb, even following the method of Paolillo 
(2013), does not partition the variation in a consistent 
manner. The effects of the nesting predictors are 
consistently underestimated. 

    Actual mixed-effects models, on the other hand, 
are being adopted more and more widely in many fields 
of study. They make it very easy to model nested 
predictors like speaker and word, and thus they 
represent a clear advance over older techniques. 
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Fixed-Effects And Mixed-Effects 
Models Applied To /t, d/-deletion In 
The Buckeye Corpus 
The parameters of simulations have to be manipulated to 
make desired points clearly. When we use real data sets 
to compare methodologies, the differences are not 
always as remarkable, and any given difference may have 
complex and multiple causes. 

Returning to the /t, d/-deletion data from the 
Buckeye Corpus, this section compares the results of a 
VARBRUL-style analysis to one employing mixed models. 
The resulting differences in predictor significances are 
striking, while those regarding effect sizes are more 
subtle. Taken together, they recommend the mixed-
model approach. 

Six predictors will be examined: segment identity, 
preceding context, following context, morphological 
category, word frequency, and (as an example of a 
between-speaker predictor), gender. The coding and 
ordering of phonological factors is based on Smith et al. 
(2009). The six predictors are modeled as independent, 
non-interacting variables. (Erker and Guy’s (2012: 545) 
suggestion that frequency “amplifies” other effects was 
tested, but not borne out at all in this data.) 

Segment identity means whether the /t, d/ would be 
pronounced /t/ or /d/, if it were not deleted. Preceding 
context is divided into five categories: sibilant, stop, 
nasal, non-sibilant fricative, liquid (in decreasing order of 
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their usual deletion-favoring effect). Following context 
forms four groups: consonant, glide, vowel (in decreasing 
order), and pause (the position of pause is dialect-
specific; Guy 1980). 

Morphological category separates the regular past 
tense (e.g. laughed) from the irregular past tenses, a 
miscellaneous group (e.g. left, burnt, cost, held, sent, 
went). The other two morphological categories are 
monomorphemes (e.g. lift), and the suffix -n’t.  

Word frequency was derived from a separate corpus 
used only for that purpose: 22.8 million words of 
telephone speech, derived by Kyle Gorman from the 
Fisher (Godfrey et al. 1992) and Switchboard (Cieri et al. 
2004) corpora. The metric used is the base-10 logarithm 
of the ratio of the frequency of each wordform to that of 
the median frequency word. Any word with the median 
frequency of 104 occurrences (like canned) thus receives 
a frequency score of 0. A word one-tenth as frequent 
(like institutionalized) receives a score of -1, a word 100 
times as frequent (like friend) receives a score of +2, and 
so forth. The most frequent words are don’t at +3.23 and 
just at +3.22; these two words alone make up 29 percent 
of the /t, d/-deletion corpus. Words with the minimum 
frequency score of -2.02 (like annexed, nudist, or 
whupped) occurred once in the telephone corpus. 

Excluding 46 tokens of words missing from the 
telephone corpus entirely, and 17 tokens without a clear 
following segment, leaves us with 13,601 tokens of 881 
word types. 
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Our mixed models employ random intercepts for 
word and speaker, because we have a between-speaker 
predictor (gender), and several between-word predictors 
(segment identity, preceding context, morphological 
category, frequency). Note that following context does 
not have a nesting relationship with either speaker or 
word, because each speaker’s data contains examples of 
many different following contexts, and more importantly, 
each word appears with many different following 
contexts. 

In the mixed model, the 40 estimated speaker 
intercepts are approximately normally distributed, 
meeting the assumption of the model. The 881 word 
intercepts form a leptokurtic distribution, with a pointier 
peak (and thicker tail) than normal, but this is due to the 
many words with only a few tokens, which, in logistic 
regression, are rarely assigned large random effects. 

Whenever we do not include by-speaker random 
slopes (as is the case for most of the discussion here), we 
are assuming that while speakers may vary in their 
overall rates of deletion, each speaker is subject to the 
same constraints (regarding predictors that apply within 
each speaker’s data, like following context). 

Similarly, individual words may favor or disfavor 
deletion, but without by-word random slopes in the 
model, each word type is assumed to respond in the 
same way to predictors like gender. 
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At the end of each of the next two sections, we will 
briefly assess the effects of relaxing these assumptions 
and seeing the effect of introducing random slopes.  

Differences in significance 

Table 2 is a comparison of the significance estimates – p-
values from likelihood-ratio tests – returned by fixed-
effects and mixed-effects models, regarding the six 
predictors described above. 

Some of the p-values are very small, and so they are 
all given in scientific notation: for example, 2.06 x 10-17 
means .0000000000000000206. The exact size of p-
values is meaningful, especially in a methodological 
comparison like this. Indeed, the idea that p-values must 
be reported and interpreted as either “significant or not” 
has been challenged, even by Fisher, the inventor of the 
p-value, himself (Gigerenzer et al. 2004). 
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The fixed-effect p-values (left column) are all extremely 
low. Relying on these numbers, we would conclude that 
the three phonological predictors, as well as 
morphological category, word frequency, and gender, all 
influence the probability of /t, d/-deletion. 

The p-values from a mixed model (right column) are 
higher in all cases but one, and usually vastly higher; the 
exception is following context. Without a nesting 
relationship with speaker or word, following context did 
not gain any spurious significance in the fixed-effects 
model. By contrast, the fixed-effects model 
overestimated the significance (underestimated the p-
value) of the between-word predictors, like preceding 
context and word frequency, due to unmodeled word 
variability, while unmodeled speaker variability led to a 
similarly overstated significance level for the between-
speaker predictor, gender. 

The fixed-effects model estimated the p-value for 
gender as 3.71 x 10-7, but the addition of random 
effects – primarily the speaker random intercept – 
brought that figure up to 0.258. In other words, gender 
no longer appeared to be a highly significant of /t, d/-
deletion, but rather one whose effect could easily have 
occurred by chance. If we also add a random by-word 
slope to consider the possibility that a gender effect 
could apply differently to different words, the p-value is 
similar: 0.184. 

The idea here is to account for the consistency as well 
as the size of effects. Above, we saw how a random 
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speaker intercept helped us see the difference between a 
hypothetical group of men who all deleted slightly more 
than a group of women, and the actual situation in the 
Buckeye corpus: a large range of deletion for both 
genders with substantial overlap between them. Similarly, 
a random by-word slope could distinguish a 
conventionally significant gender effect, for example 
where men delete slightly more than women regardless 
of the word being spoken, from the actual situation, 
where the overall gender difference is not significant, but 
men do tend to delete more in 491 word types while 
women favor deletion in 390 others. 

We can go on to test if this random slope is itself 
significant – it is – and identify examples of this lexical 
interaction. So the common word don’t shows more than 
twice the usual gender effect: 81% deletion for men, 70% 
for women. Meanwhile, can’t shows the reverse effect: 
33% deletion for men vs. 40% for women. Mixed models 
cannot explain a surprising (and statistically significant) 
pattern like this, but they are indispensable for 
identifying them. We might have to return to the 
transcripts or audio to look for other predictors 
correlated with gender, in order to understand these 
differences. 

On a more basic level, the mixed model reports that 
speakers vary with a standard deviation of 0.48 log-
odds, while words have a standard deviation of 0.59. The 
model can also tell us which speakers (#19, #11, #13, 
#37) and words (kind, amount, front) most favor deletion, 
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and which speakers (#6, #25) and words (can’t, saint) 
most disfavor it. 

The infinitesimal fixed-effects p-value for word 
frequency implies that its relationship to deletion is 
unquestionable. However, the data does not support such 
a strong relationship. For example, if we consider old and 
told, where the preceding context is almost identical, and 
further constrain the following context to tokens before 
consonants, we find 61 percent deletion in told (44/72), 
but only 30 percent in old (20/66), even though old is 
three times as frequent as told in the telephone corpus. 

Such word-level reversals by no means discredit the 
frequency effect, but taking them into account does lead 
to a more reasonable significance estimate. Unlike the 
fixed-effects p-value near 10-70, the mixed-effects p-
value near .0002 says that there is a very small, but non-
negligible chance that this sample could have come from 
a population having no real underlying frequency effect 
on /t, d/-deletion. 

With a large data set such as this one, predictor 
effects that are real – and most of those found here have 
been detected in previous studies – will remain 
significant using a mixed-effects model. With a fixed-
effects model the significance of many predictors will be 
exaggerated. This may not matter if we are considering a 
predictor that actually has a real effect. But fixed-effects 
regression may also claim “significance” for predictors 
that have no relationship to the response other than that 
due to random chance (Type I error). 
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Differences in effect size 

Moving beyond significance levels – which are highly 
dependent on the size of a data set, as well as on the 
strength of the effects – this section will compare the 
estimated effect sizes between a fixed-effects and a 
mixed-effects model, each of which contain the five 
predictors that were confirmed as significant by the 
mixed-effects model above (that is, removing gender, 
notwithstanding the potential interaction with word type). 
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Table 3 presents these coefficients both in log-odds and 
as factor weights, except for the continuous predictor of 
word frequency. The coefficient for frequency represents 
the estimated change in the log-odds of deletion for a 
one-unit increase in the frequency score (that is, for a 
tenfold increase in word frequency). 

Each predictor is affected differently by the change 
from a fixed-effects model to a mixed model with 
speaker and word intercepts. We will list the similarities 
and differences, and try to understand why the most 
important differences come about. 

Among the between-word predictors, the models 
agree on the effect of segment identity: /d/ is slightly 
more likely to delete than /t/. For the effect of preceding 
context, the ordering of levels is close to Smith et al. 
(2009) – except nasals favor deletion here more than 
stops – but the estimates do change somewhat between 
the two models. The coefficients for a preceding stop 
(positive) or fricative (negative) move towards zero in the 
mixed model, while that for a liquid becomes more 
negative, disfavoring deletion. 

For following context, the mixed model effects are all 
about 10 percent larger. This is likely caused by the 
phenomenon discussed above, where pooling data across 
grouping factors leads to underestimation of effect sizes 
in logistic regression. (The introduction of random slopes 
makes the average following-context effects larger still; 
the individual effects vary somewhat by speaker, and 
even more according to word.) 
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This is somewhat surprising in light of Guy et al. 
(2008), which observed, in a historical corpus from New 
Zealand, that words which occur more frequently in 
deletion-favoring environments (e.g. before consonants) 
show more deletion overall, even in disfavoring 
environments (e.g. before vowels). The same correlation 
appears, albeit weakly, in the Buckeye Corpus. The theory 
is that a word which occurs more often in the deleted 
form – at first simply due to the balance of environments 
it occurs in – will acquire a tendency of its own towards 
deletion. Conversely, if a word tends to occur in contexts 
that disfavor deletion, it will come to disfavor deletion 
itself, even in favoring contexts. 

A random intercept for word could model this 
behavior, if it were really this simple. In fact, the 
correlation is noticeably weaker in the following-vowel 
environment than the following-consonant environment. 
Table 4 shows this with the 39 words that have at least 5 
tokens before both consonants and vowels (excluding 
post-nasal tokens, which show an unusually high rate of 
deletion before vowels), correlating the proportion of 
following consonants in the context with the deletion 
rates before consonants and vowels. 
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Complicating the story even further, it seems that 
individual words can diverge greatly from the typical 
following-context effects. If words are individually 
sensitive to their own contexts, it is hard to see how an 
overall favoring or disfavoring tendency could develop 
just from the context (although other such tendencies do 
develop somehow). 

In terms of the deletion-favoring effect of a following 
consonant compared to a following vowel, the word old is 
about average: 20/66 = 30% deletion before a consonant 
(as noted above), 6/44 = 14% deletion before a vowel. 
The word moved shows an increased sensitivity to the 
following context: 10/21 = 48% deletion before a 
consonant, 0/35 = 0% deletion before a vowel. And the 
word child diverges in the opposite direction: 4/32 = 
12.5% deletion before a consonant, 10/30 = 33% deletion 
before a vowel. 

Such findings raise questions about the causes and 
extent of lexical idiosyncrasy that would take further 
work to resolve. And we note that while the overall 
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random slope for following context is significant, the 
particular differences among moved, old, and child are 
based on fairly few tokens.   

  Morphological category is the only predictor where 
the order of the levels changes between the models. In 
the fixed-effects model, the irregular past tense category 
favors deletion most, while in the mixed model, n’t favors 
deletion the most. The reason for the reversal is not 
entirely clear, but probably reflects the fact that a larger 
overall n’t effect allows the mixed model to have smaller 
individual-word effects for the few common words in this 
category. 

Both models agree that irregular pasts undergo 
deletion more than monomorphemes, an unexpected 
result that deserves further investigation. Regular past 
forms show the least tendency to delete, a typical finding 
which may support a functionalist “tendency for 
semantically relevant information to be retained in 
surface structure” (Kiparsky 1982:87) or a cycle-based 
lexical phonology account (Guy 1991) where 
monomorphemes are exposed to a deletion rule more 
than rule-generated regular past tense forms. 

The largest difference between the two models 
concerns word frequency, where the mixed model 
estimate of +0.187 log-odds per tenfold increase in 
frequency is less than half the size of the fixed-effects 
estimate of +0.383. That is, more frequent words exhibit 
more deletion in both models, but in the mixed model 
this effect is less than half as large. 



Daniel Ezra Johnson 

 53 

This change is brought about by the random 
intercepts assigned to each word, which allow the model 
to fit the data more closely, along with a weaker overall 
frequency effect. Words with very high or very low 
deletion rates can be treated as exceptional, without their 
behavior necessarily being linked to between-word 
predictors like frequency. 

Mixed models offer a way to handle “outlier” words 
without throwing away their data. The three highest-
frequency words – don’t, just and kind – all show more 
deletion than is predicted from their frequencies and the 
other factors in the model. If we discarded these three 
words – one-third of the data! – the fixed-effect 
frequency slope would drop from 0.383 all the way to 
0.100. The mixed model’s estimate of 0.187 falls in 
between; it does not ignore exceptional words, nor does 
it ignore that their behavior is exceptional. 

Also, recall that words with an unusually high or low 
number of tokens are treated on a fairly equal footing by 
the mixed model, so the idiosyncratic properties of the 
most frequent words do not bias our estimates – even 
our estimates of a frequency effect.  

As with any continuous predictor, a careful treatment 
of word frequency would go on to explore whether some 
other relationship besides a straight line might fit the 
data better. But even on an initial pass, we can see that to 
understand the intricacies of this data set – e.g. that word 
frequency does favor deletion, but not as much as the 

Natural Language Data Calls For Mixed-Effects Models 

 54 

few most frequent words might suggest – the mixed-
effects model is a useful, if not essential, tool. 

We should also note that by using random effects, 
mixed models attempt to eliminate idiosyncrasies in a 
data set that might not apply to another set of data on 
the same variable, one drawn from different speakers and 
largely comprised of different words. Fixed-effects 
models incorporate these idiosyncrasies, making models 
less comparable. 

The Importance Of Mixed Models 
The long history of variable rule analysis, including the 
substantial bibliography on /t, d/-deletion, consists of 
researchers comparing and contrasting their results in a 
productive manner. So we know that fixed-effects 
models’ effect sizes are not massively unreliable, nor 
have shrunken p-values consistently led to a fatal level of 
Type I error. 

Nevertheless, having described several clear 
advantages of applying mixed-effects models to natural 
language data, this article recommends that we capture 
any effects of the individual speaker and/or individual 
word using crossed random intercepts, at the very 
minimum, and to consider using random slopes as well,  

 Our simulations and other analyses have shown how 
inaccurate our regression estimates can be if we ignore 
the real structure of our data and act as if each token 
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were independent and of equal value in determining the 
effects of the predictors. 

The fairly large Buckeye Corpus of /t, d/-deletion 
showed that substantial differences in effect size, and 
very large differences in significance, can exist between 
fixed-effects and mixed models applied to the same 
data. Of course, the true parameters underlying the 
Buckeye data, like any real data set, are unknown, but 
insights taken from the simulations and the investigation 
of outlier words support the mixed model approach.  

Given enough data to fit it, switching to a mixed-
effects regression model will cut down on spurious 
effects, while real effects will usually remain significant. 
Mixed models also estimate effect sizes more accurately, 
in a way that abstracts from the idiosyncrasies of the 
sample at hand. Thus, they offer hope for superior 
quantitative analysis and are a better tool for comparison 
with – or replication of – other research. 

In the terminology of statistics, mixed model results 
are generally more conservative. As one linguist puts it, 
“Using mixed models and adding individual speaker as a 
random effect results in interesting, logical results for my 
data. The results are conservative, but I like that. If I don't 
use speaker as random, I get loads of extra factors as 
significant, but lots of these make no sense and simply 
can't be explained. This again gives me confidence in my 
conservative approach” (Rob Drummond, p.c.). 

The other side of this methodological coin is that 
using mixed models, analysts may need to examine 
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larger data sets, generally involving more speakers 
and/or more lexical types, in order for the effects of 
some predictors to be properly recognized as significant. 
But preferring Type II error over Type I error, like this, is 
standard scientific procedure. 

 Regardless of the specific purpose of our regression 
analysis, we do not want our models to tell us that 
irrelevant predictors are significant (which fixed-effects 
models often do). Our discussions and conclusions are 
also likely to be improved if we are able to work with the 
most accurate coefficient estimates possible (which 
mixed models can provide). In particular, research 
comparing linguistic varieties – where similar models are 
fit to different data sets – will benefit from the use of 
speaker random effects, which help distinguish 
community differences from purely individual ones. 
Indeed, revealing the extent of individual-speaker 
variation – and measuring and comparing it between 
communities – is itself a valuable insight to be gained 
from mixed modeling, especially as such variation has 
been largely overlooked in much VARBRUL practice. 

If individual speakers’ behavior, or its relationship to 
group norms, is the focus of investigation (e.g. Drager 
and Hay 2012), then mixed models are especially 
valuable. In this case, between-speaker factors (age, 
gender, etc.) serve as the variables to be controlled, in 
order to better reveal individual patterns and 
idiosyncrasies. This is the reverse of the approach 
employed above, where an improved description of the 
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size and significance of social factors was a goal that was 
better reached by keeping individual differences under 
control. Whichever focus a researcher has, mixed models 
improve their vision. 

There are other ways in which linguistic insights can 
be gained from the use of mixed models, beyond the 
statistical advantages that have been the focus of this 
article. As noted, we have fit random intercepts not so 
much for their own sake, but to obtain more accurate 
significances and effect sizes for the fixed effects of 
interest. However, Drager and Hay (2012) show how the 
random intercepts calculated in one model can be used 
as predictors in subsequent models, a procedure they call 
cascading models.  

Fruehwald and MacKenzie (2011) propose that if 
community members show markedly different levels of 
inter-speaker variability (“cohesion”, to use their term) 
with respect to two phenomena, then the phenomena 
should be considered grammatically distinct. On the 
other hand, if a community displays a similar degree of 
cohesion regarding two processes, the processes might 
be considered unitary in the grammar. Fruehwald and 
Mackenzie use this logic to argue that the additional /t, 
d/-deletion found in English semiweak past tense forms 
is more variable between speakers – and hence 
grammatically distinct from – the deletion that affects 
regular past tenses, even though they occur with a 
similar average probability. Conversely, the rare 
contraction of had (e.g. in they’d gone) and the common 
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contraction of has/have (e.g. in they’ve gone) may be 
governed by the same underlying process, because the 
community has similar cohesion factors (equivalent to 
speaker intercept standard deviations) with respect to 
both. While it is far from being proved, such a linguistic 
hypothesis could hardly have been formulated and tested 
without mixed models, which are ideally suited for 
evaluating and comparing inter-speaker variation. 

While there exist many other valuable modern 
statistical methods for the analysis of linguistic data (see 
Tagliamonte and Baayen 2012), mixed-effects regression 
models are becoming an essential tool. As long as our 
data consists of repeated observations from more than 
one speaker, and of more than one word, the greater 
accuracy of mixed models with respect to both 
significance and effect size, as demonstrated in this 
article, should lead analysts to avoid fixed-effects 
modeling techniques such as VARBRUL/GoldVarb. 

At the same time that they focus a sharper 
quantitative lens on familiar higher-order social and 
linguistic predictors, mixed models provide a new type of 
information about a lower level of variation: they show 
how speakers and words vary, both as a population and 
as individuals. The first advantage strengthens the study 
of variation as we have known it for decades; the second 
opens new doors for linguistic investigation and insight. 
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